banner



What Type Of Digestive System Does This Animal Have?

Creature Nutrition and the Digestive System

Digestive Systems

OpenStaxCollege

[latexpage]

Learning Objectives

By the finish of this section, yous volition be able to:

  • Explain the processes of digestion and absorption
  • Compare and contrast dissimilar types of digestive systems
  • Explicate the specialized functions of the organs involved in processing nutrient in the trunk
  • Describe the means in which organs work together to digest food and absorb nutrients

Animals obtain their nutrition from the consumption of other organisms. Depending on their nutrition, animals tin can be classified into the following categories: plant eaters (herbivores), meat eaters (carnivores), and those that swallow both plants and animals (omnivores). The nutrients and macromolecules present in food are not immediately accessible to the cells. There are a number of processes that modify food within the animal body in order to make the nutrients and organic molecules accessible for cellular function. As animals evolved in complexity of form and part, their digestive systems have also evolved to conform their various dietary needs.

Herbivores, Omnivores, and Carnivores

Herbivores are animals whose main nutrient source is plant-based. Examples of herbivores, as shown in [link] include vertebrates similar deer, koalas, and some bird species, also as invertebrates such as crickets and caterpillars. These animals have evolved digestive systems capable of handling large amounts of plant material. Herbivores tin can be further classified into frugivores (fruit-eaters), granivores (seed eaters), nectivores (nectar feeders), and folivores (leaf eaters).

Herbivores, like this (a) mule deer and (b) monarch caterpillar, swallow primarily establish material. (credit a: modification of work by Nib Ebbesen; credit b: modification of work by Doug Bowman)


Left photo shows a buck with antlers. Right photo shows a black, yellow, and white striped caterpillar eating a leaf.

Carnivores are animals that swallow other animals. The give-and-take carnivore is derived from Latin and literally means "meat eater." Wild cats such as lions, shown in [link]a and tigers are examples of vertebrate carnivores, as are snakes and sharks, while invertebrate carnivores include bounding main stars, spiders, and ladybugs, shown in [link]b. Obligate carnivores are those that rely entirely on animal flesh to obtain their nutrients; examples of obligate carnivores are members of the cat family, such as lions and cheetahs. Facultative carnivores are those that likewise eat non-animal nutrient in addition to animal food. Note that there is no articulate line that differentiates facultative carnivores from omnivores; dogs would be considered facultative carnivores.

Carnivores similar the (a) panthera leo eat primarily meat. The (b) ladybug is as well a carnivore that consumes small insects chosen aphids. (credit a: modification of work by Kevin Pluck; credit b: modification of work by Jon Sullivan)


Top photo shows a lion. Bottom photo shows a ladybug.

Omnivores are animals that eat both plant- and beast-derived food. In Latin, omnivore means to eat everything. Humans, bears (shown in [link]a), and chickens are example of vertebrate omnivores; invertebrate omnivores include cockroaches and crayfish (shown in [link]b).

Omnivores like the (a) bear and (b) crayfish eat both plant and animal based food. (credit a: modification of piece of work by Dave Menke; credit b: modification of work past Jon Sullivan)


Top photo shows a bear. Bottom photo shows a crayfish.

Invertebrate Digestive Systems

Animals accept evolved unlike types of digestive systems to aid in the digestion of the dissimilar foods they eat. The simplest example is that of a gastrovascular cavity and is institute in organisms with but i opening for digestion. Platyhelminthes (flatworms), Ctenophora (comb jellies), and Cnidaria (coral, jelly fish, and body of water anemones) employ this type of digestion. Gastrovascular cavities, equally shown in [link]a, are typically a blind tube or cavity with but one opening, the "rima oris", which also serves as an "anus". Ingested material enters the oral cavity and passes through a hollow, tubular crenel. Cells within the cavity secrete digestive enzymes that break down the food. The food particles are engulfed by the cells lining the gastrovascular crenel.

The alimentary canal, shown in [link]b, is a more than advanced organization: information technology consists of ane tube with a oral fissure at one stop and an anus at the other. Earthworms are an instance of an brute with an alimentary canal. Once the nutrient is ingested through the mouth, it passes through the esophagus and is stored in an organ chosen the crop; then it passes into the gizzard where it is churned and digested. From the gizzard, the food passes through the intestine, the nutrients are absorbed, and the waste is eliminated as carrion, called castings, through the anus.

(a) A gastrovascular crenel has a single opening through which food is ingested and waste product is excreted, as shown in this hydra and in this jellyfish medusa. (b) An alimentary culvert has 2 openings: a oral fissure for ingesting food, and an anus for eliminating waste material, equally shown in this nematode.


Part A shows a hydra, which has a vase-shaped body with tentacles around the rim. The hydra's mouth is located between the tentacles, at the top of the vase. Next to the hydra is a jellyfish medusa, which is bell shaped with tentacles hanging down from the edge of the bell. The mouth, in the lower middle part of the body, opens into the gastrovascular cavity. Part B shows a nematode, which has a long, tube-like body that is wide at one end and tapers down to a tail at the other. The mouth is in the center of the wide end. It opens into an esophagus, then a pharynx. The pharynx empties into a long intestine, which ends at the anus a short distance before the tail.

Vertebrate Digestive Systems

Vertebrates take evolved more complex digestive systems to adapt to their dietary needs. Some animals have a single tum, while others take multi-chambered stomachs. Birds have developed a digestive arrangement adapted to eating unmasticated food.

Monogastric: Single-chambered Stomach

Every bit the word monogastric suggests, this type of digestive system consists of one ("mono") breadbasket chamber ("gastric"). Humans and many animals take a monogastric digestive organisation equally illustrated in [link]ab. The process of digestion begins with the mouth and the intake of food. The teeth play an important role in masticating (chewing) or physically breaking downward food into smaller particles. The enzymes present in saliva also begin to chemically break down nutrient. The esophagus is a long tube that connects the rima oris to the tum. Using peristalsis, or wave-similar polish muscle contractions, the muscles of the esophagus push the food towards the stomach. In society to speed upwardly the actions of enzymes in the breadbasket, the breadbasket is an extremely acidic environment, with a pH between 1.5 and 2.five. The gastric juices, which include enzymes in the tum, act on the food particles and go along the process of digestion. Further breakdown of food takes place in the small intestine where enzymes produced by the liver, the pocket-size intestine, and the pancreas continue the process of digestion. The nutrients are absorbed into the blood stream across the epithelial cells lining the walls of the small intestines. The waste material material travels on to the large intestine where water is absorbed and the drier waste textile is compacted into feces; information technology is stored until information technology is excreted through the rectum.

(a) Humans and herbivores, such as the (b) rabbit, have a monogastric digestive arrangement. However, in the rabbit the small intestine and cecum are enlarged to let more than time to digest establish textile. The enlarged organ provides more surface area for absorption of nutrients. Rabbits digest their food twice: the first fourth dimension food passes through the digestive system, it collects in the cecum, so it passes equally soft feces called cecotrophes. The rabbit re-ingests these cecotrophes to further assimilate them.


The basic components of the human and rabbit digestive system are the same: each begins at the mouth. Food is swallowed through the esophagus and into the kidney-shaped stomach. The liver is located on top of the stomach, and the pancreas is underneath. Food passes from the stomach to the long, winding small intestine. From there it enters the wide large intestine before passing out the anus. At the junction of the small and large intestine is a pouch called the cecum. The small and large intestines are much longer in rabbits than in humans, and the cecum is much longer as well.

Avian

Birds face up special challenges when it comes to obtaining nutrition from food. They do not have teeth and then their digestive system, shown in [link], must be able to process un-masticated food. Birds accept evolved a variety of nib types that reflect the vast variety in their diet, ranging from seeds and insects to fruits and nuts. Considering about birds fly, their metabolic rates are high in order to efficiently process food and go along their body weight depression. The stomach of birds has two chambers: the proventriculus, where gastric juices are produced to assimilate the nutrient before it enters the stomach, and the gizzard, where the food is stored, soaked, and mechanically ground. The undigested cloth forms food pellets that are sometimes regurgitated. Most of the chemical digestion and assimilation happens in the intestine and the waste matter is excreted through the cloaca.

The avian esophagus has a pouch, chosen a ingather, which stores food. Food passes from the crop to the first of two stomachs, called the proventriculus, which contains digestive juices that break downward nutrient. From the proventriculus, the food enters the 2d tum, called the gizzard, which grinds nutrient. Some birds swallow stones or dust, which are stored in the gizzard, to aid the grinding procedure. Birds do not have separate openings to excrete urine and feces. Instead, uric acid from the kidneys is secreted into the large intestine and combined with waste product from the digestive procedure. This waste material is excreted through an opening chosen the cloaca.


Illustration shows an avian digestive system. Food is swallowed through the esophagus into the crop, which is shaped like an upside-down heart. From the bottom of the crop food enters a tubular proventriculus, which empties into a spherical gizzard. From the gizzard, food enters the small intestine, then the large intestine. Waste exits the body through the cloaca. The liver and pancreas are located between the crop and gizzard. Rather than a single cecum, birds have two caeca at the junction of the small and large intestine.

Evolution Connection

Avian Adaptations

Birds have a highly efficient, simplified digestive system. Recent fossil bear witness has shown that the evolutionary divergence of birds from other land animals was characterized by streamlining and simplifying the digestive system. Unlike many other animals, birds exercise not have teeth to chew their food. In place of lips, they have sharp pointy beaks. The horny neb, lack of jaws, and the smaller tongue of the birds can be traced back to their dinosaur ancestors. The emergence of these changes seems to coincide with the inclusion of seeds in the bird nutrition. Seed-eating birds have beaks that are shaped for grabbing seeds and the two-compartment breadbasket allows for delegation of tasks. Since birds need to remain calorie-free in lodge to fly, their metabolic rates are very high, which ways they assimilate their food very rapidly and need to consume often. Contrast this with the ruminants, where the digestion of plant matter takes a very long time.

Ruminants

Ruminants are mainly herbivores similar cows, sheep, and goats, whose unabridged diet consists of eating large amounts of roughage or fiber. They have evolved digestive systems that help them digest vast amounts of cellulose. An interesting feature of the ruminants' oral cavity is that they practice not take upper incisor teeth. They utilize their lower teeth, tongue and lips to tear and chew their food. From the mouth, the food travels to the esophagus and on to the stomach.

To help assimilate the large amount of plant cloth, the stomach of the ruminants is a multi-chambered organ, as illustrated in [link]. The four compartments of the stomach are called the rumen, reticulum, omasum, and abomasum. These chambers contain many microbes that interruption down cellulose and ferment ingested nutrient. The abomasum is the "true" stomach and is the equivalent of the monogastric stomach chamber where gastric juices are secreted. The four-compartment gastric chamber provides larger space and the microbial support necessary to assimilate plant material in ruminants. The fermentation process produces large amounts of gas in the tummy chamber, which must be eliminated. As in other animals, the small intestine plays an of import part in nutrient assimilation, and the large intestine helps in the elimination of waste product.

Ruminant animals, such every bit goats and cows, have 4 stomachs. The commencement ii stomachs, the rumen and the reticulum, contain prokaryotes and protists that are able to assimilate cellulose cobweb. The ruminant regurgitates cud from the reticulum, chews it, and swallows it into a third tum, the omasum, which removes water. The cud then passes onto the fourth stomach, the abomasum, where information technology is digested by enzymes produced by the ruminant.


Illustration shows the digestive system of a goat. Food passes from the mouth, through the esophagus and into the rumen. It circulates clockwise through the rumen, then moves forward, and down into the small, pouch-shaped reticulum. From the reticulum the food, which is now cud, is regurgitated. The animal chews the cud, and then swallows it into the coiled omasum, which sits between the reticulum and the rumen. After circulating through the omasum the food enters the small intestine, then the large intestine. Waste is excreted through the anus.

Pseudo-ruminants

Some animals, such as camels and alpacas, are pseudo-ruminants. They swallow a lot of plant textile and roughage. Digesting institute cloth is not easy considering plant cell walls contain the polymeric sugar molecule cellulose. The digestive enzymes of these animals cannot break down cellulose, merely microorganisms present in the digestive organisation can. Therefore, the digestive organisation must be able to handle large amounts of roughage and break down the cellulose. Pseudo-ruminants have a 3-sleeping room stomach in the digestive system. Even so, their cecum—a pouched organ at the showtime of the large intestine containing many microorganisms that are necessary for the digestion of plant materials—is big and is the site where the roughage is fermented and digested. These animals do non have a rumen but have an omasum, abomasum, and reticulum.

Parts of the Digestive System

The vertebrate digestive system is designed to facilitate the transformation of food affair into the food components that sustain organisms.

Oral Cavity

The oral crenel, or mouth, is the indicate of entry of nutrient into the digestive arrangement, illustrated in [link]. The food consumed is broken into smaller particles past mastication, the chewing activeness of the teeth. All mammals have teeth and can chew their food.

The extensive chemical process of digestion begins in the mouth. As food is being chewed, saliva, produced by the salivary glands, mixes with the nutrient. Saliva is a watery substance produced in the mouths of many animals. At that place are three major glands that secrete saliva—the parotid, the submandibular, and the sublingual. Saliva contains fungus that moistens food and buffers the pH of the food. Saliva also contains immunoglobulins and lysozymes, which have antibacterial action to reduce tooth decay by inhibiting growth of some leaner. Saliva too contains an enzyme called salivary amylase that begins the procedure of converting starches in the nutrient into a disaccharide called maltose. Another enzyme called lipase is produced by the cells in the natural language. Lipases are a grade of enzymes that can break down triglycerides. The lingual lipase begins the breakdown of fatty components in the nutrient. The chewing and wetting action provided by the teeth and saliva prepare the nutrient into a mass called the bolus for swallowing. The tongue helps in swallowing—moving the bolus from the mouth into the pharynx. The pharynx opens to ii passageways: the trachea, which leads to the lungs, and the esophagus, which leads to the stomach. The trachea has an opening called the glottis, which is covered by a cartilaginous flap chosen the epiglottis. When swallowing, the epiglottis closes the glottis and food passes into the esophagus and not the trachea. This arrangement allows food to exist kept out of the trachea.

Digestion of food begins in the (a) oral crenel. Food is masticated by teeth and moistened past saliva secreted from the (b) salivary glands. Enzymes in the saliva brainstorm to digest starches and fats. With the help of the tongue, the resulting bolus is moved into the esophagus by swallowing. (credit: modification of piece of work by the National Cancer Institute)


Illustration A shows the parts of the human oral cavity. The tongue rests in the lower part of the mouth. The flap that hangs from the back of the mouth is the uvula. The airway behind the uvula, called the pharynx, extends up to the nostrils and down to the esophagus, which begins in the neck. Illustration B shows the two salivary glands, which are located beneath the tongue, the sublingual and the submandibular. A third salivary gland, the parotid, is located behind the pharynx.

Esophagus

The esophagus is a tubular organ that connects the rima oris to the stomach. The chewed and softened food passes through the esophagus afterwards beingness swallowed. The smooth muscles of the esophagus undergo a series of moving ridge like movements called peristalsis that button the food toward the stomach, as illustrated in [link]. The peristalsis wave is unidirectional—it moves nutrient from the oral cavity to the tum, and reverse movement is non possible. The peristaltic movement of the esophagus is an involuntary reflex; it takes identify in response to the deed of swallowing.

The esophagus transfers nutrient from the mouth to the breadbasket through peristaltic movements.


Photo shows food moving down the esophagus, which is a muscular tube. Muscles constrict behind the food. The constriction moves down, pushing the food ahead of it, from the mouth to the stomach.

A ring-similar muscle called a sphincter forms valves in the digestive system. The gastro-esophageal sphincter is located at the stomach stop of the esophagus. In response to swallowing and the pressure level exerted by the bolus of food, this sphincter opens, and the bolus enters the stomach. When in that location is no swallowing action, this sphincter is shut and prevents the contents of the stomach from traveling up the esophagus. Many animals have a truthful sphincter; withal, in humans, there is no true sphincter, but the esophagus remains closed when at that place is no swallowing action. Acid reflux or "heartburn" occurs when the acidic digestive juices escape into the esophagus.

Stomach

A large part of digestion occurs in the stomach, shown in [link]. The tummy is a saclike organ that secretes gastric digestive juices. The pH in the tummy is between 1.5 and 2.v. This highly acidic environs is required for the chemical breakdown of food and the extraction of nutrients. When empty, the breadbasket is a rather small organ; nevertheless, it tin aggrandize to up to 20 times its resting size when filled with food. This characteristic is particularly useful for animals that need to swallow when food is available.

Fine art Connection

The human tummy has an extremely acidic environs where most of the protein gets digested. (credit: modification of work past Mariana Ruiz Villareal)


Illustration shows the human lower digestive system, which begins with the stomach, a sac that lies above the large intestine. The stomach empties into the small intestine, which is a long, highly folded tube. The beginning of the small intestine is called the duodenum, the long middle part is called the jejunum, and the end is called the ileum. The ileum empties into the large intestine on the right side of the body. Beneath the junction of the small and large intestine is a small pouch called the cecum. The appendix is at the bottom end of the cecum. The large intestine travels up the left side of the body, across the top of the small intestine, then down the right side of the body. These parts of the large intestine are called the ascending colon, the transverse colon and the descending colon, respectively. The large intestine empties into the rectum, which is connected to the anus. The pancreas is sandwiched between the stomach and large intestine. The liver is a triangular organ that sits above and slightly to the right of the stomach. The gallbladder is a small bulb between the liver and stomach.

Which of the following statements almost the digestive system is false?

  1. Chyme is a mixture of nutrient and digestive juices that is produced in the stomach.
  2. Food enters the big intestine before the small intestine.
  3. In the pocket-sized intestine, chyme mixes with bile, which emulsifies fats.
  4. The tum is separated from the small intestine by the pyloric sphincter.

<!–<para>B–>

The stomach is besides the major site for protein digestion in animals other than ruminants. Protein digestion is mediated past an enzyme called pepsin in the tum chamber. Pepsin is secreted by the chief cells in the stomach in an inactive form chosen pepsinogen. Pepsin breaks peptide bonds and cleaves proteins into smaller polypeptides; it also helps activate more than pepsinogen, starting a positive feedback mechanism that generates more pepsin. Another cell blazon—parietal cells—secrete hydrogen and chloride ions, which combine in the lumen to course hydrochloric acid, the primary acidic component of the tum juices. Hydrochloric acid helps to convert the inactive pepsinogen to pepsin. The highly acidic environment also kills many microorganisms in the food and, combined with the action of the enzyme pepsin, results in the hydrolysis of protein in the nutrient. Chemic digestion is facilitated past the churning activity of the stomach. Wrinkle and relaxation of smoothen muscles mixes the stomach contents about every 20 minutes. The partially digested food and gastric juice mixture is called chyme. Chyme passes from the breadbasket to the small-scale intestine. Further protein digestion takes place in the small intestine. Gastric emptying occurs within two to half dozen hours after a meal. Simply a minor amount of chyme is released into the small intestine at a time. The movement of chyme from the stomach into the small intestine is regulated by the pyloric sphincter.

When digesting protein and some fats, the stomach lining must exist protected from getting digested by pepsin. There are two points to consider when describing how the tummy lining is protected. Beginning, as previously mentioned, the enzyme pepsin is synthesized in the inactive form. This protects the main cells, because pepsinogen does not accept the aforementioned enzyme functionality of pepsin. Second, the tum has a thick fungus lining that protects the underlying tissue from the action of the digestive juices. When this mucus lining is ruptured, ulcers can form in the breadbasket. Ulcers are open wounds in or on an organ caused past bacteria (Helicobacter pylori) when the mucus lining is ruptured and fails to reform.

Small Intestine

Chyme moves from the stomach to the small-scale intestine. The small intestine is the organ where the digestion of poly peptide, fats, and carbohydrates is completed. The small intestine is a long tube-like organ with a highly folded surface containing finger-like projections called the villi. The apical surface of each villus has many microscopic projections called microvilli. These structures, illustrated in [link], are lined with epithelial cells on the luminal side and let for the nutrients to exist absorbed from the digested food and absorbed into the claret stream on the other side. The villi and microvilli, with their many folds, increase the surface expanse of the intestine and increase absorption efficiency of the nutrients. Captivated nutrients in the blood are carried into the hepatic portal vein, which leads to the liver. In that location, the liver regulates the distribution of nutrients to the residual of the trunk and removes toxic substances, including drugs, alcohol, and some pathogens.

Art Connection

Villi are folds on the minor intestine lining that increase the expanse to facilitate the absorption of nutrients.


Illustration shows a cross section of the small intestine, the lumen, or inside of which has many fingerlike projections called villi. Muscle layers wrap around the outside of the intestine, and blood vessels interact with the muscle layer. A blowup shows that capillaries and lymphatic vessels travel up inside the villi. The surface of each villus is covered with hairline microvilli.

Which of the following statements virtually the modest intestine is fake?

  1. Absorptive cells that line the pocket-sized intestine have microvilli, small projections that increase surface area and aid in the absorption of food.
  2. The inside of the small intestine has many folds, chosen villi.
  3. Microvilli are lined with blood vessels as well equally lymphatic vessels.
  4. The inside of the small intestine is called the lumen.

<!–<para>C–>

The human small-scale intestine is over 6m long and is divided into iii parts: the duodenum, the jejunum, and the ileum. The "C-shaped," fixed part of the small-scale intestine is called the duodenum and is shown in [link]. The duodenum is separated from the tum by the pyloric sphincter which opens to allow chyme to move from the breadbasket to the duodenum. In the duodenum, chyme is mixed with pancreatic juices in an alkaline solution rich in bicarbonate that neutralizes the acidity of chyme and acts as a buffer. Pancreatic juices as well contain several digestive enzymes. Digestive juices from the pancreas, liver, and gallbladder, as well every bit from gland cells of the abdominal wall itself, enter the duodenum. Bile is produced in the liver and stored and concentrated in the gallbladder. Bile contains bile salts which emulsify lipids while the pancreas produces enzymes that catabolize starches, disaccharides, proteins, and fats. These digestive juices pause downwardly the nutrient particles in the chyme into glucose, triglycerides, and amino acids. Some chemical digestion of food takes place in the duodenum. Absorption of fatty acids as well takes place in the duodenum.

The second role of the small-scale intestine is called the jejunum, shown in [link]. Here, hydrolysis of nutrients is continued while most of the carbohydrates and amino acids are absorbed through the abdominal lining. The bulk of chemical digestion and nutrient absorption occurs in the jejunum.

The ileum, also illustrated in [link] is the final role of the modest intestine and here the bile salts and vitamins are absorbed into claret stream. The undigested food is sent to the colon from the ileum via peristaltic movements of the muscle. The ileum ends and the large intestine begins at the ileocecal valve. The vermiform, "worm-like," appendix is located at the ileocecal valve. The appendix of humans secretes no enzymes and has an insignificant role in immunity.

Large Intestine

The big intestine, illustrated in [link], reabsorbs the water from the undigested food material and processes the waste fabric. The homo large intestine is much smaller in length compared to the modest intestine but larger in bore. It has 3 parts: the cecum, the colon, and the rectum. The cecum joins the ileum to the colon and is the receiving pouch for the waste product matter. The colon is home to many bacteria or "intestinal flora" that aid in the digestive processes. The colon tin can be divided into iv regions, the ascending colon, the transverse colon, the descending colon and the sigmoid colon. The primary functions of the colon are to extract the h2o and mineral salts from undigested food, and to shop waste product material. Carnivorous mammals have a shorter big intestine compared to herbivorous mammals due to their diet.

The big intestine reabsorbs water from undigested food and stores waste matter material until it is eliminated.


Illustration shows the structure of the large intestine, which begins with the ascending colon. Below the ascending colon is the cecum. The vermiform appendix is a small projection at the bottom of the cecum. The ascending colon travels up the right side of the body, then turns into the transverse colon. On the left side of the body the large intestine turns again, into the descending colon. At the bottom, the descending colon curves up; this part of the intestine is called the sigmoid colon. The sigmoid colon empties into the rectum. The rectum travels straight down, to the anus.

Rectum and Anus

The rectum is the terminal stop of the big intestine, as shown in [link]. The primary role of the rectum is to store the feces until defecation. The carrion are propelled using peristaltic movements during elimination. The anus is an opening at the far-end of the digestive tract and is the exit point for the waste matter material. Two sphincters between the rectum and anus command elimination: the inner sphincter is involuntary and the outer sphincter is voluntary.

Accessory Organs

The organs discussed above are the organs of the digestive tract through which food passes. Accessory organs are organs that add secretions (enzymes) that catabolize food into nutrients. Accessory organs include salivary glands, the liver, the pancreas, and the gallbladder. The liver, pancreas, and gallbladder are regulated by hormones in response to the nutrient consumed.

The liver is the largest internal organ in humans and it plays a very important office in digestion of fats and detoxifying blood. The liver produces bile, a digestive juice that is required for the breakup of fatty components of the food in the duodenum. The liver also processes the vitamins and fats and synthesizes many plasma proteins.

The pancreas is another important gland that secretes digestive juices. The chyme produced from the stomach is highly acidic in nature; the pancreatic juices contain high levels of bicarbonate, an alkali that neutralizes the acidic chyme. Additionally, the pancreatic juices contain a large variety of enzymes that are required for the digestion of protein and carbohydrates.

The gallbladder is a pocket-sized organ that aids the liver by storing bile and concentrating bile salts. When chyme containing fat acids enters the duodenum, the bile is secreted from the gallbladder into the duodenum.

Section Summary

Dissimilar animals take evolved different types of digestive systems specialized to meet their dietary needs. Humans and many other animals have monogastric digestive systems with a single-chambered tum. Birds have evolved a digestive system that includes a gizzard where the nutrient is crushed into smaller pieces. This compensates for their inability to masticate. Ruminants that consume large amounts of establish material have a multi-chambered stomach that digests roughage. Pseudo-ruminants have similar digestive processes equally ruminants but practise non have the 4-compartment tum. Processing food involves ingestion (eating), digestion (mechanical and enzymatic breakdown of large molecules), absorption (cellular uptake of nutrients), and elimination (removal of undigested waste as feces).

Many organs work together to digest food and blot nutrients. The rima oris is the betoken of ingestion and the location where both mechanical and chemical breakdown of food begins. Saliva contains an enzyme called amylase that breaks downwards carbohydrates. The nutrient bolus travels through the esophagus past peristaltic movements to the tum. The stomach has an extremely acidic environment. An enzyme called pepsin digests protein in the stomach. Further digestion and absorption take place in the small intestine. The large intestine reabsorbs water from the undigested food and stores waste until elimination.

Fine art Connections

[link] Which of the following statements most the digestive organisation is false?

  1. Chyme is a mixture of nutrient and digestive juices that is produced in the breadbasket.
  2. Food enters the large intestine before the minor intestine.
  3. In the small intestine, chyme mixes with bile, which emulsifies fats.
  4. The stomach is separated from the small intestine by the pyloric sphincter.

[link] Which of the following statements almost the minor intestine is faux?

  1. Absorptive cells that line the pocket-size intestine have microvilli, modest projections that increase surface area and aid in the absorption of food.
  2. The inside of the small intestine has many folds, called villi.
  3. Microvilli are lined with claret vessels as well as lymphatic vessels.
  4. The inside of the small intestine is called the lumen.

Review Questions

Which of the post-obit is a pseudo-ruminant?

  1. moo-cow
  2. pig
  3. crow
  4. equus caballus

Which of the following statements is untrue?

  1. Roughage takes a long time to digest.
  2. Birds eat large quantities at one time so that they can wing long distances.
  3. Cows practice non have upper teeth.
  4. In pseudo-ruminants, roughage is digested in the cecum.

The acidic nature of chyme is neutralized by ________.

  1. potassium hydroxide
  2. sodium hydroxide
  3. bicarbonates
  4. vinegar

The digestive juices from the liver are delivered to the ________.

  1. breadbasket
  2. liver
  3. duodenum
  4. colon

Free Response

How does the polygastric digestive system help in digesting roughage?

Animals with a polygastric digestive system have a multi-chambered stomach. The four compartments of the stomach are chosen the rumen, reticulum, omasum, and abomasum. These chambers contain many microbes that break downwardly the cellulose and ferment the ingested food. The abomasum is the "true" tum and is the equivalent of a monogastric stomach chamber where gastric juices are secreted. The iv-compartment gastric chamber provides larger space and the microbial support necessary for ruminants to assimilate plant material.

How do birds assimilate their food in the absence of teeth?

Birds have a breadbasket sleeping accommodation called a gizzard. Here, the nutrient is stored, soaked, and ground into finer particles, frequently using pebbles. In one case this process is complete, the digestive juices take over in the proventriculus and continue the digestive process.

What is the role of the accessory organs in digestion?

Accessory organs play an important part in producing and delivering digestive juices to the intestine during digestion and assimilation. Specifically, the salivary glands, liver, pancreas, and gallbladder play important roles. Malfunction of whatsoever of these organs can lead to disease states.

Explain how the villi and microvilli aid in assimilation.

The villi and microvilli are folds on the surface of the small intestine. These folds increment the surface surface area of the intestine and provide more area for the absorption of nutrients.

Glossary

gastrointestinal tract
tubular digestive system with a oral fissure and anus
anus
get out point for waste matter material
bile
digestive juice produced past the liver; important for digestion of lipids
bolus
mass of food resulting from chewing action and wetting by saliva
carnivore
animate being that consumes animate being flesh
chyme
mixture of partially digested food and stomach juices
duodenum
first office of the minor intestine where a large part of digestion of carbohydrates and fats occurs
esophagus
tubular organ that connects the rima oris to the stomach
gallbladder
organ that stores and concentrates bile
gastrovascular cavity
digestive system consisting of a single opening
gizzard
muscular organ that grinds food
plant eater
beast that consumes strictly constitute diet
ileum
last function of the small intestine; connects the small-scale intestine to the big intestine; of import for absorption of B-12
jejunum
2d part of the pocket-size intestine
big intestine
digestive system organ that reabsorbs h2o from undigested fabric and processes waste product matter
lipase
enzyme that chemically breaks downwardly lipids
liver
organ that produces bile for digestion and processes vitamins and lipids
monogastric
digestive organisation that consists of a unmarried-chambered stomach
omnivore
animate being that consumes both plants and animals
pancreas
gland that secretes digestive juices
pepsin
enzyme plant in the breadbasket whose main role is protein digestion
pepsinogen
inactive form of pepsin
peristalsis
wave-like movements of muscle tissue
proventriculus
glandular part of a bird's stomach
rectum
area of the body where carrion is stored until elimination
roughage
component of nutrient that is low in energy and high in cobweb
ruminant
animal with a breadbasket divided into four compartments
salivary amylase
enzyme plant in saliva, which converts carbohydrates to maltose
small intestine
organ where digestion of protein, fats, and carbohydrates is completed
sphincter
band of muscle that controls movement of materials throughout the digestive tract
tummy
saclike organ containing acidic digestive juices
villi
folds on the inner surface of the small intestine whose function is to increment absorption area

Source: https://pressbooks-dev.oer.hawaii.edu/biology/chapter/digestive-systems/

Posted by: partainovertutremew.blogspot.com

0 Response to "What Type Of Digestive System Does This Animal Have?"

Post a Comment

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel